

Morphological Impacts and COastal Risks induced by Extreme storm events

Stand van zaken September 2010

P. Haerens and A. Bolle

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissimination

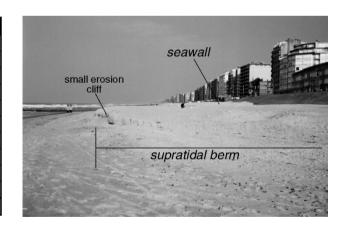
- Overview of MICORE project:
 - Main goals :

"The primary goal of the MICORE project is to develop and demonstrate on-line tools for reliable predictions of the morphological impact of storm events in support of civil protection mitigation strategies."

"Morphological models will be linked to wave and surge forecasting models to <u>demonstrate a real-time warning system</u> and to implement its usage within Civil Protection agencies."

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination

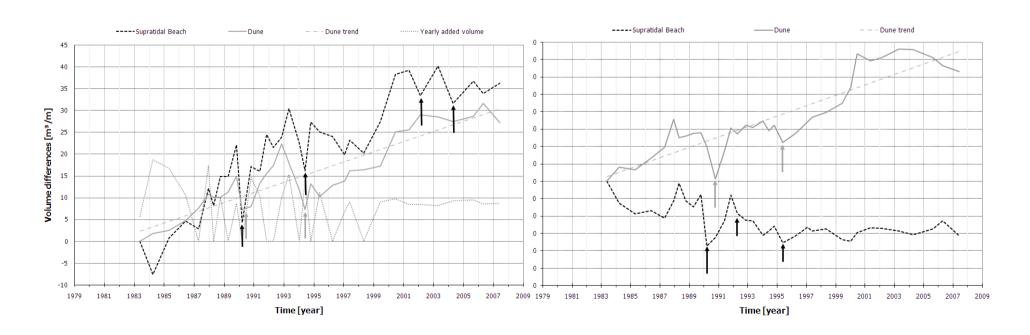
- WP1 Historical Storms:
 - Aim:
 - "Collect site specific metocean and morphological data in support of WP4"
 - By:
 - Analysis of historical storms
 - Identification of critical storm threshold
 - Climate change impacts on storm occurrence
 - Upload of data on historical storms


- WP1 Historical Storms:
 - Results:
 - Analysis of historical storms:
 - Hs, max
 - WL
 - Duration
 - Induced wave energy
 - If available time series in the database

		Hs,max	WL	Duration	Wave Energy	Winter
Nº	Date	[m]	[m TAW]	[Hours]	[J/m²]	
1	06/Feb/1984	4.32	5.21	12.25	6.27E+06	1984
2	23/Nov/1984	4.81	5.63	4.50	4.95E+06	1985
3	15/Jan/1986	3.95	5.24	2.00	3.17E+06	1986
4	20/Oct/1986	4.00	5.50	0.25	2.52E+06	
5	01/Nov/1986	3.76	5.30	0.25	2.08E+06	1987
6	18/Dec/1986	4.36	5.02	13.00	4.00E+06	1987
7	15/Jan/1987	4.17	3.97	17.50	3.75E+06	
8	10/Feb/1988	4.23	5.07	4.00	4.08E+06	
9	29/Feb/1988	4.18	4.73	24.25	4.90E+06	1988
10	20/Dec/1988	3.81	4.74	0.25	1.93E+06	
11	14/Feb/1989	3.94	5.37	2.50	2.19E+06	1989
12	25/Jan/1990	5.08	4.92	11.50	4.08E+06	
13	12/Feb/1990	4.05	5.20	0.75	2.88E+06	
14	15/Feb/1990	3.80	4.82	0.25	2.25E+06	1990
15	26/Feb/1990	4.70	5.76	42.25	5.20E+06	
16	01/Mar/1990	4.70	5.47	5.25	5.95E+06	
17	10/Dec/1990	4.47	3.92	10.50	4.76E+06	
18	12/Dec/1990	4.47	5.16	5.75	4.38E+06	1991
19	06/Jan/1991	4.26	5.00	3.75	3.15E+06	
20	06/Oct/1992	3.86	3.80	0.75	4.50E+06	1993
21	14/Nov/1993	5.31	5.97	19.50	3.49E+06	1994
22	28/Jan/1994	4.08	5.88	9.75	4.31E+06	1994
23	01/Jan/1995	4.12	5.85	11.25	4.01E+06	
24	12/Jan/1995	4.20	4.47	8.75	3.33E+06	1995
25	26/Jan/1995	4.11	4.20	4.50	3.35E+06	
26	19/Feb/1996	4.78	5.34	30.50	4.82E+06	1996
27	29/Aug/1996	4.95	5.33	18.00	2.84E+06	1997
28	28/Oct/1996	4.64	5.65	3.75	3.27E+06	1997
29	04/Jan/1998	3.88	4.60	0.75	4.00E+06	1998
30	08/Oct/1998	3.97	5.34	1.50	2.08E+06	1999
31	24/Dec/1999	3.99	5.24	2.00	2.67E+06	2000
32	28/May/2000	3.96	4.34	1.50	1.68E+06	2001
33	29/Oct/2000	4.13	4.55	1.25	3.65E+06	2001
34	08/Nov/2001	4.47	4.83	17.25	3.31E+06	2002
35	26/Oct/2002	4.38	5.00	0.46	2.83E+06	2003
36	20/Dec/2003	3.80	5.43	0.50	2.52E+06	2004
37	07/Feb/2004	4.10	5.44	-	-	2004
38	13/Nov/2004	3.80	5.73	0.50	1.96E+06	
39	17/Dec/2004	3.84	5.38	0.50	1.68E+06	2005
40	14/Feb/2005	4.24	5.09	3.25	3.83E+06	
41	17/Dec/2005	3.92	5.43	2.00	2.93E+06	2006
42	09/Nov/2007	4.69	5.93	11.25	4.47E+06	2007

- WP1 Historical Storms:
 - Results:
 - Identification of critical storm threshold:
 - Comparison of available volume changes with occured storm periods, for 10 coastal areas, 12.2 km

Selected area	Coastal Section	Geographical name	Coastal length [m]	Observations since
1	7 - 12	Verkaveling Westhoek, De Panne	1420	1983
2	22 - 25	Sint-Idesbald, Koksijde	1010	1983
3	26 - 31	Koksijde Bad	1125	1983
4	40 - 43	Oostduinkerke Bad	965	1983
5	60 - 63	Nieuwpoort, east of Ijzermonding	815	1983
6	83 - 87	Middelkerke Bad	1745	1983
7	104 - 108	Mariakerke beach	1770	1983
8	151 - 158	De Haan, centre	1606	1981
9	173 - 176	Wenduine Bad	850	1981
10	202 - 208	Blankenberge, De Fonteintjes	894	1979
	Total analysed	d coastal length	12200	



- WP1 Historical Storms:
 - Results:
 - Identification of critical

Selected																								Y	ear																									
area	1982	2	1983	1984	19	85	19	86	19	87	198	38	19	89	19	990	19	991	19	92	19	93	19	94	1	995	19	96	19	97	19	98	19	99	20	00	20	01	20	02	20	103	2	004	2	005	5	2006	20	07
area	SB I) S	B D	SB I	SB	D	SB	D	SB	D	SB	D	SB	D	SB	D	SB	D	SB	D	SB	D	SB	D	SI	B	SB	D	SI	D	S	B [) S	B D	SB	D														
1	(*) (°	5)		П				П		П		П			15	10			10		Г		Г		5	5	Г		П				Г		П				П		П		Г		П	Т	Т		П	П
2	(*) (*)													20	10							15	10															5				10				Т			
3	(*) (°	9						П				П											10	5	10	5															Г			Т	Г	T	Т		T	
4	(*) (*	")							10	20			10	5	15			П					10	5	П														10				10				Т			
5	(*) (°	")		15 5				П	15	15					15	10	П	П		Г	П		5	15	10)					П										Г	П	П	Т	П	Т	Т		П	
6	(*) (*	9							15	5		П			10	5	П				П		П		П								10								П		П	П	П	Т	Т		Т	
7	(*) (°	9		10					5			П			10						5	5																			Г				Г		Т		10	
8	15 5	5		25 5	15	10		П	20	5		П			35	15							15		20)							10		20		10		15		Г			Т	Г	T	Т		10	
9	10	Т						П	5						20	5		П			10	5	10	5	П	Т	5	5							15	5								Т	П	T	Т		Т	
10		Т			П				10	5					15	20					П		10	10									5								П		П	Т	П	Т	Т		Т	

storm threshold: Volume variations

- WP1 Historical Storms:
 - Results:
 - Identification of critical storm threshold:
 - Analysis main table
 - Threshold=combination
 H_s > 4.1 m
 WL > +5.0 mTAW
 Storm duration > 9.5hrs
 - To compare RP1 year:
 - $H_s = 4.50m$
 - WL = 5.40m TAW

	D-1-	$H_{s,max}$	WL	Duration	Energy +/-1.5d	Number of	Maximum Erosion	Winte	
No	Date	[m]	[m TAW]	[Hours]	[J/m²]	affected areas	[m³/m]		
1	06/Feb/1984	4.32	5.21	12.25	3.74E+06	3.00	25	1984	
2	23/Nov/1984	4.81	5.63	4.50	3.20E+06	1.00	15	1985	
3	15/Jan/1986	3.95	5.24	2.00	2.23E+06	0.00	0	1986	
4	20/Oct/1986	4.00	5.50	0.25	1.86E+06				
5	01/Nov/1986	3.76	5.30	0.25	1.37E+06	7.00	20	1987	
6	18/Dec/1986	4.36	5.02	13.00	2.43E+06	7.00	20	1967	
7	15/Jan/1987	4.17	3.97	17.50	3.16E+06				
8	10/Feb/1988	4.23	5.07	4.00	2.86E+06				
9	29/Feb/1988	4.18	4.73	24.25	3.59E+06	0.00	0	1988	
10	20/Dec/1988	3.81	4.74	0.25	1.42E+06				
11	14/Feb/1989	3.94	5.37	2.50	1.71E+06	1.00	10	1989	
12	25/Jan/1990	5.08	4.92	11.50	2.71E+06				
13	12/Feb/1990	4.05	5.20	0.75	1.91E+06				
14	15/Feb/1990	3.80	4.82	0.25	1.35E+06	9.00	35	1990	
15	26/Feb/1990	4.70	5.76	42.25	3.23E+06				
16	01/Mar/1990	4.70	5.47	5.25	3.41E+06				
17	10/Dec/1990	4.47	3.92	10.50	2.10E+06				
18	12/Dec/1990	4.47	5.16	5.75	2.64E+06	0.00	0	1991	
19		4.26	5.00	3.75	2.16E+06				
20	06/Oct/1992	3.86	3.80	0.75	2.84E+06	2.00	10	1993	
21	14/Nov/1993	5.31	5.97	19.50	3.20E+06	7.00	15	1994	
22	28/Jan/1994	4.08	5.88	9.75	2.63E+06	7.00	15	1994	
23	01/Jan/1995	4.12	5.85	11.25	2.87E+06				
24	12/Jan/1995	4.20	4.47	8.75	2.33E+06	4.00	20	1995	
25	26/Jan/1995	4.11	4.20	4.50	1.81E+06				
26	19/Feb/1996	4.78	5.34	30.50	3.63E+06	1.00	5	1996	
27	29/Aug/1996	4.95	5.33	18.00	2.52E+06	0.00	0	1997	
28	28/Oct/1996	4.64	5.65	3.75	2.46E+06	0.00	· ·	1337	
29	04/Jan/1998	3.88	4.60	0.75	2.73E+06	0.00	0	1998	
30	08/Oct/1998	3.97	5.34	1.50	1.36E+06	3.00	10	1999	
31	24/Dec/1999	3.99	5.24	2.00	1.84E+06	2.00	20	2000	
32	28/May/2000	3.96	4.34	1.50	1.36E+06	1.00	10	2001	
33	29/Oct/2000	4.13	4.55	1.25	2.56E+06	1.00	10	2001	
34	08/Nov/2001	4.47	4.83	17.25	2.72E+06	3.00	15	2002	
35	26/Oct/2002	4.38	5.00	0.46	2.12E+06	0.00	0	2003	
36	20/Dec/2003	3.80	5.43	0.50	2.16E+06	2.00	10	2004	
37	07/Feb/2004	4.10	5.44			2.00	10	2004	
38		3.80	5.73	0.50	1.21E+06				
39		3.84	5.38	0.50	1.22E+06	0.00	0	2005	
40	14/Feb/2005	4.24	5.09	3.25	3.10E+06				
41	17/Dec/2005	3.92	5.43	2.00	2.36E+06	0.00	0	2006	
42		4.69	5.93	11.25	2.62E+06	2.00	10	2007	

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination

- WP2 Data Standards:
 - Aim:
 - The objective of this work package is to take-in, store, process and disseminate physical data for each pilot site (bathymetries, waves, tides etc.) in a form convenient for the assessment of storm risk along the European coast.
 - By:
 - Open Source initiative:
 - Open Earth Tools

- Meta-data follow INSPIRE regulations
- Network Common Data Form (NetCDF)

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination

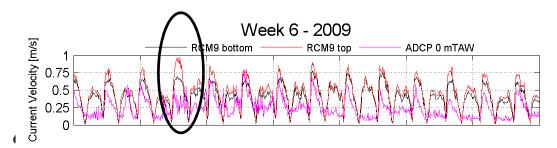
- WP3 Site monitoring:
 - Measurements undertaken
 - Registered storms during the monitoring period
 - Hydrodynamic campaign
 - Preliminary results
 - Analysis report

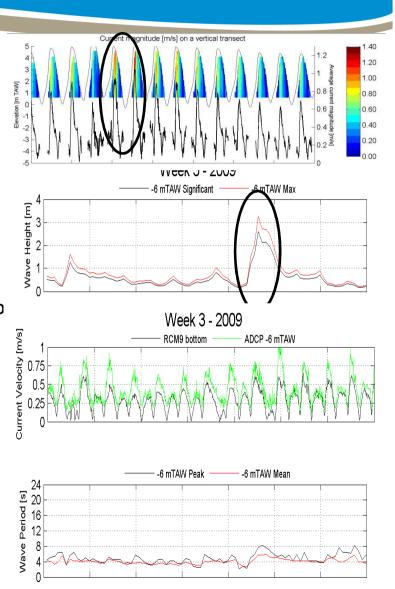
Status WP3 - Information based on Table 1.4 (DoW pg. 27)

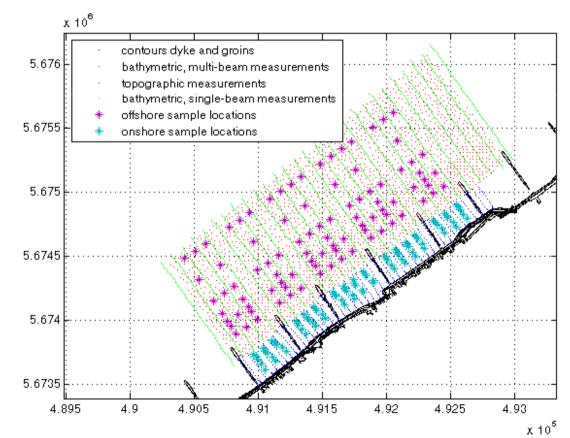
According DoW
Extention of duration of measurement campaign
Executed measurements
Storm events
Executed analysis and data transfer
Planned analysis and data transfer

WP3 - ITEMS	Applicabel for	Jun-08	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb-09	Mar-09	Apr-09		Jun-09		Aug-09	Sep-09	Oct-09	Nov-09	Dec-09	Jan-10	Feb-10	Mar-10	Apr-10	May-10
WIS TEMS	IMDC	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
WP3 - Set up of program		Α	ccording	DoW:	month 1	- 6																			
WP3 - Storm Specific monitoring									Acc	ording DoW: 6	to 18														
Long term monitoring																									
Topography	x					17/10/2008	26/11/2008	16/12/2008		12/02/2009		28/04/2009					10/09/2009					-	05/03/2010	30/04/2010	ð
Bathymetry	x					17/10/2008		17/12/2008		13/02/2009		14/04/2009					23/09/2009					25/02/2010	10/03/2010	29/04/2010	0
Shoreline	x					17/10/2008		17/12/2008		13/02/2009		28/04/2009					23/09/2009								
Hydrodynamics																									
Offshore waves	X									By w	ave rider	bouy at Akkae	rt (22m	depth)											
Nearshore waves										By wave rid	ler bouy a	it Oostende No	odstran	d (6m de	epth)										
Tide	х										By ti	dal gauge in O	stend												
Wind	x									By wind	measure	ments at Wes	thinder ((offshore	9)						7				
STORM OCCURANCE							20/11/2008		23/01/2009	10/02/2009											77	28/02/2010	27		
Post Storm Surveys																									
Profile evolution	х						26/11/2008		12/0	2/2009												YES			
Morphological changes	х						26/11/2008		12/0	2/2009												YES			
Socio-economic impacts	x						NA			NA												NA			
Maximum Water run-up	x						NA			NA												NA			
Storm processes							NA			NA												NA			
Intensive campaign																									
Additional hydrodynamics	x								Measurement	of waves, curre	ents and t	urbidity													
Profile pre/post storm	x					17/10/2008	26/11/2008		16/12/2008	12/02/2009												YES			
Recovery processess	x																					YES			
WP3 - Processing data											Accordi	ng DOW : mor	th 6 -23	3											
Morphology	x																								
Hydrodynamics	x																								
WP3 - Transfer to databank											Accordi	ng DOW : mon	th 6 - 24	1											
Morphology																									
Topography	x				(·	0		مادام ۵	0 6-46		 .													
Bathymetrmy	x					ourvey:	$S : \delta \cup C$	pograp	onic &	8 bath	yme	etric St	ırve	ys											
Cross-shore profiles	x					•					•			•											
Sediment analysis	x					Contir	านous r	eaistra	ation o	f forcir	na m	ecnan	ısm	S											
Hydrodynamics															_	_									
Offshore waves	X			Add	ditio	nal hv	drodvr	namic d	campai	ign froi	m D	ec 08-	unti	ıl Ar	or ()	9									
Nearshore waves	X					•	•		•						~										
Currents	X					Pr	ncessir	na data	a = Nc	v 09 –	Απο	ıııst 1()												
Water levels	x											ć													
Wind	х					Tran	sfer of	data :	= May	10 - S	ente	mher	10												
WP3 - Deliverables						Hull	510101	data -	- indy	10 0	Chr	THIDCI	10												
D3.1 Report	x		1	1	1	1	1			1	1		1	1	1	1									
D3.2 - Short term measurements	x																								
D3.3 - Morphological data	x																								
	1	1	1	1														1	1	1	1				

- WP3 Site monitoring:
 - Registered storms during the monitoring period:
 - Based on thresholds for morphological change:
 - 20/11/2008: $H_{s,max} = 4.1 \text{m & WL} = +4.5 \text{m TAW}$
 - 23/01/2009: $H_{s,max} = 4.5 \text{m & WL} = +4.1 \text{m TAW}$
 - 10/02/2009: $H_{s,max} = 4.1$ m & WL = +5.7m TAW
 - 28/02/2010: $H_{s,max} = 3.0$ m & WL = +5.6m TAW
 - Only storm of 10/02/2009 > threshold values for waves and water level => duration +/- 10hours

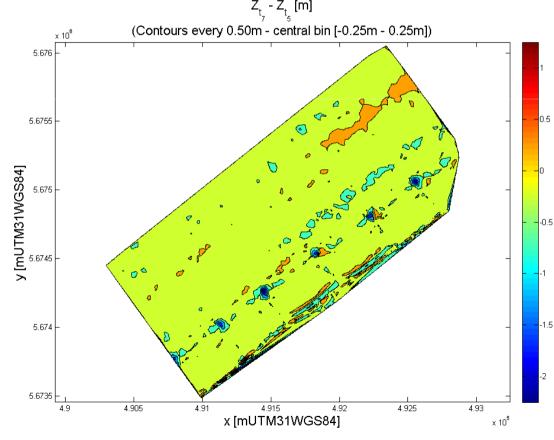



- WP3 Site monitoring:
 - Hydrodynamic campaign:
 - Measurement of wave parameters and current velocities at different locations => the factual data report


- WP3 Site monitoring:
 - Hydrodynamic campaign:
 - Influences of the storms of Jan &
 Feb 09 are visible in the records:
 - Current velocities:
 - Increase during storms ±20%
 - Cross-shore variations
 - SSC.
 - Valuable input for WP4 tests

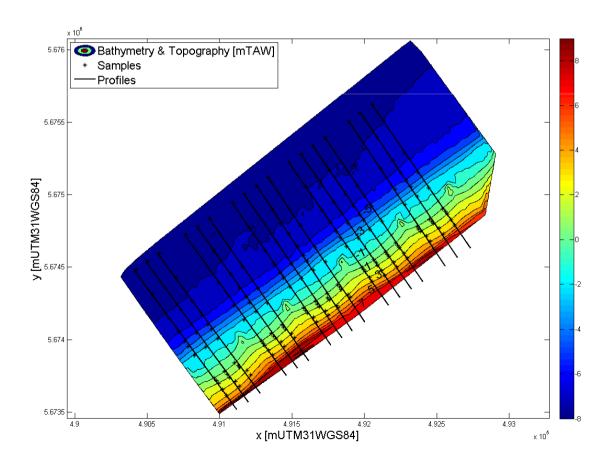
- WP3 Site monitoring:
 - Preliminary results:


Set-up:



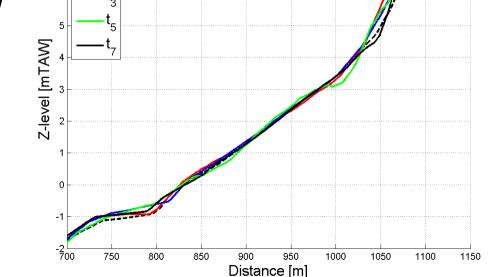
WP3 – Site monitoring:

Preliminary results



- WP3 Site monitoring:
 - Preliminary results:
 - DTM Sept. 2009 –
 March 2010 =
 in general < 0.5
 - Same pattern:
 - Near Ostend
 - At the groins
 - Along the dykes
 - Includes effects of Xynthia storm

- WP3 Site monitoring:
 - Preliminary results:
 - Profile positions:
 - 17 profiles
 - N°1 SW
 - N97 NE


- WP3 Site monitoring:
 - Profiles can be separated into 4 zones:

Active zone between +8 and +3mTAW, max. changes

= +/-1m, near the dyke

 Neglectible changes between +3 & 0mTAW

- Small changes between 0 and -3/4m
- Neglectible changes between -3/-4m and -8mTAW

Profile 13

- WP3 Site monitoring:
 - NO SIGNIFICANT STORMS for uniform significant morphological changes nor damage along the project site were registered during monitoring period
 - Available historical data will be used for WP4

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination

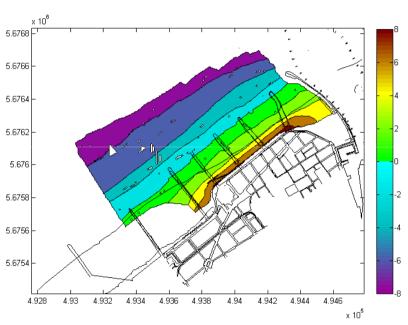
- WP4 Models and impacts:
 - Aim:

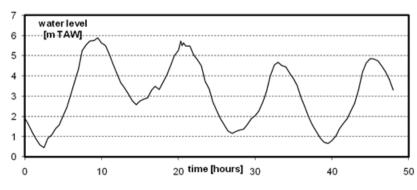
"The objective of this work package is to <u>use</u>, <u>validate and extend</u>

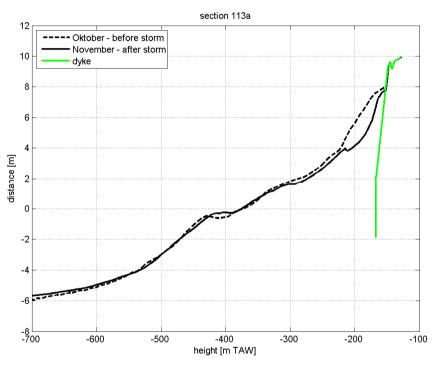
<u>the free-ware X-Beach model</u> for various European coastal

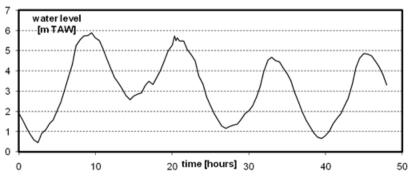
hazard situations and <u>compare</u> its outputs with off-the-shelf

packages."


"The end goal is to incorporate jointly-developed (between partners) algorithms into one shared operational forecast/predictive model..."


"To connect off-the-shelf models and X-Beach model with the socio-economic impact via <u>Storm Impact Indicators</u> (SIIs)."

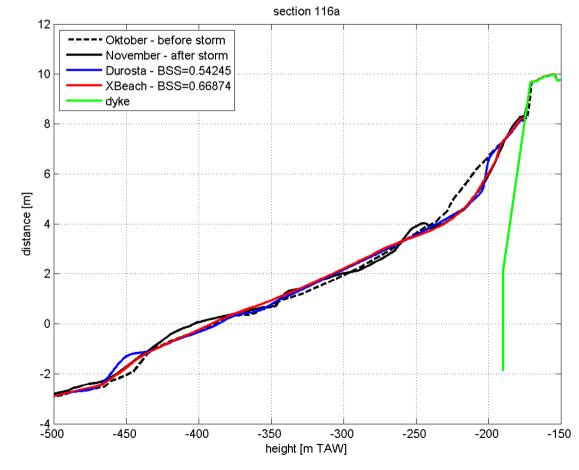



Storm November 2007

→ Data Ostend Noodstrand

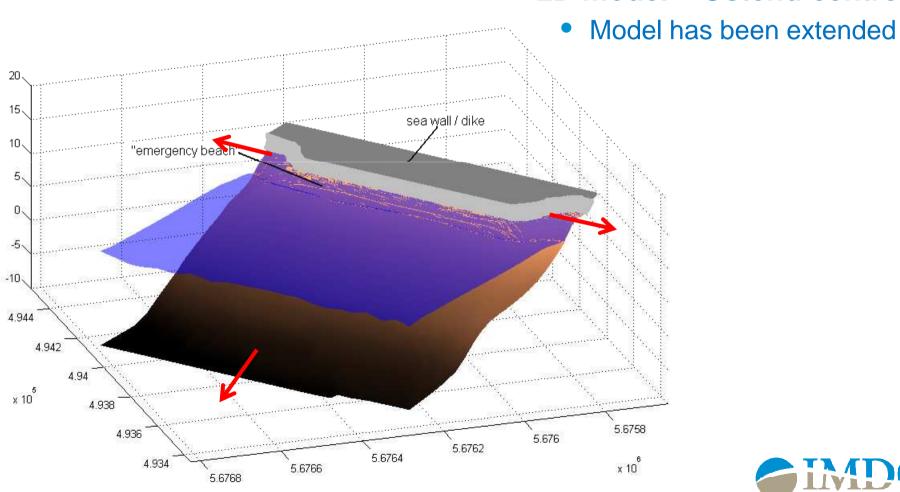
Results to date

- Set-up of XBeach model for Ostend centre
 - 1D / 2D (+ extended model)
 - Including sea wall → hard structure
 - Historical storm
 - Test new XBeach versions & other parameter settings
- Comparison with
 - measurements (beach levels)
 - Durosta
 - → calibration

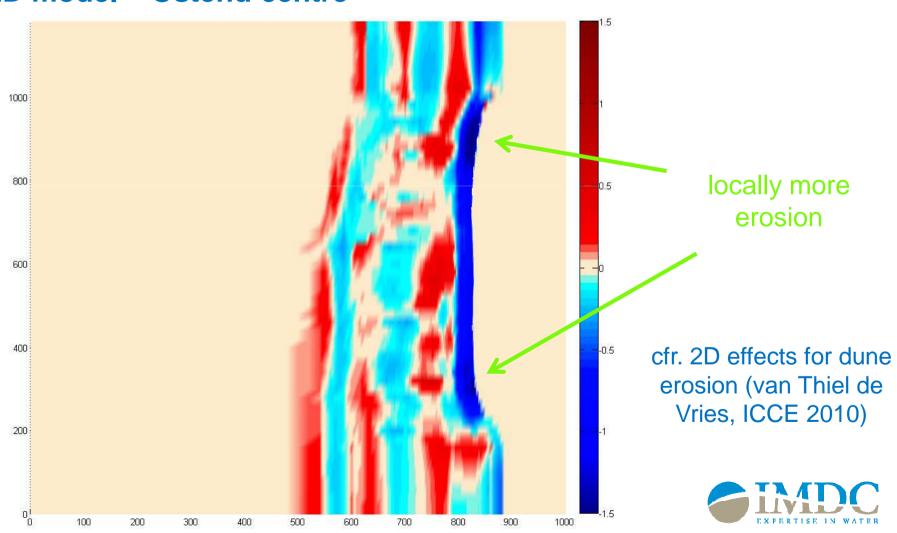


Results to date

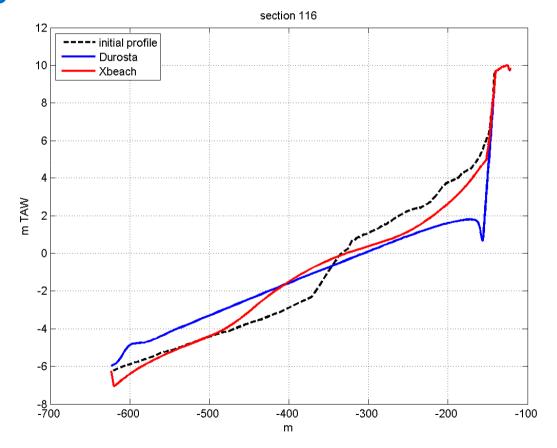
1D model – Ostend center


→ In general the performance of XBeach is at least as good as Durosta for beach erosion where no "hard structure" (e.g. dykes) are involved.

Section	Briar Skill Score (BSS)										
[number]	Durosta	XBeach									
113a	0.26	0.42									
114a	0.45	0.34									
114b	0.44	0.31									
115a	0.55	0.81									
115b	0.45	0.65									
116a	0.54	0.67									
116b	0.51	0.57									
117a	0.40	0.47									
average	0.45	0.53									


Results to date

2D model – Ostend centre


2D model - Ostend centre

Results to date

1D model - Ostend centre

- 1000-years storm event
 - 1D XBeach model for Ostend centre
 - Erosion reaches the dyke
- Comparison with
 - Durosta
 - → in XBeach, smaller amount of erosion close to the dyke
 - → reflection?

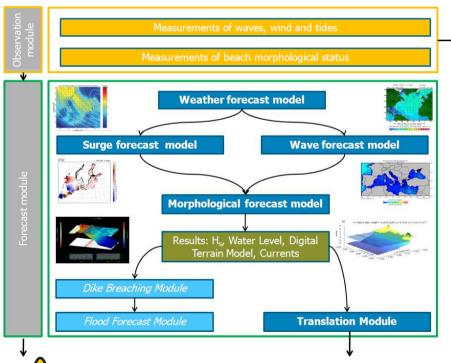
Next steps (I)

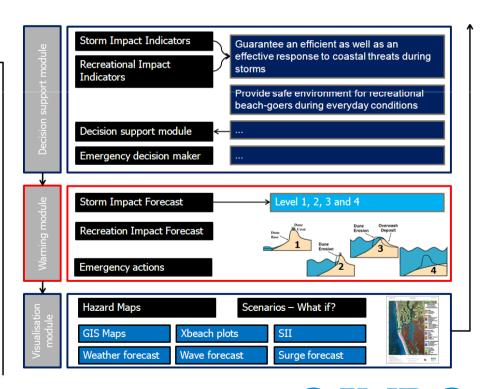
Continue with Ostende centre model

- To investigate storm impact on beach + sea wall
- Historical dataset
- Improve models
- → effect of hard structures (i.e. reflection) needs to be improved
- → improve stability and calcalution speed of 2D model
- → include currents

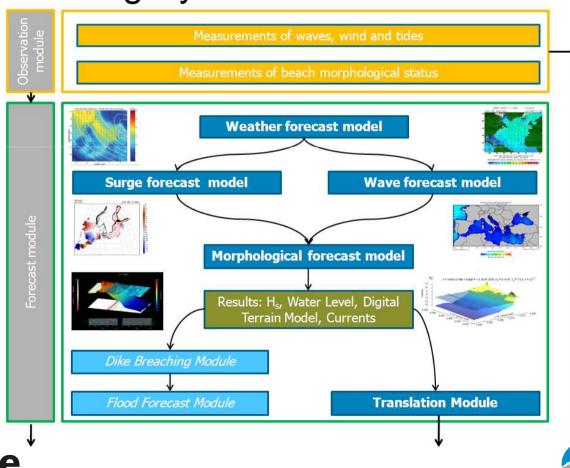
- WP4 Models and impacts:
 - X-Beach model:
 - the erosion profile near and above the water level is well reproduced. In general the performance of XBeach is at least as good as Durosta for beach erosion where no "hard structure" (e.g. dykes) are involved.
 - Quite some difference are noticed between Durosta and X-Beach when hard structures are exposed => the most important being the smaller amount of erosion found with XBeach close to the dyke.
 - Xbeach does predict 2D effects at curved sections => added value for complex situations.

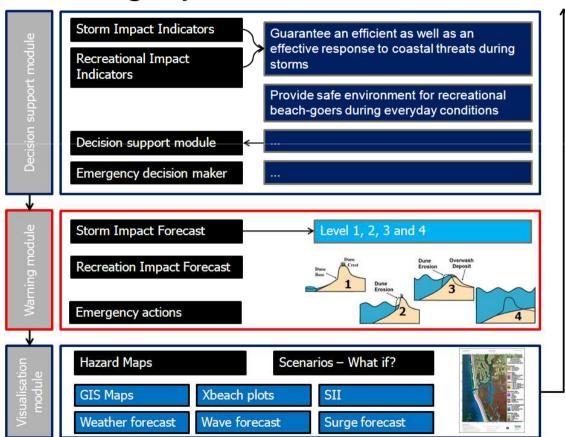
- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination




- WP5 Warning System:
 - Aim:
 - Scope = <u>not</u> to develop a fully on-line operational real time warning system
 - Main goal = to demonstrate the capability of a prototype model train for the test site to predict the impact of extreme storm events
 - Final deliverable of WP5 = <u>a demonstration test case</u> in which the partners demonstrate that an operational model for the forecast of morphological change at their study site is <u>feasible</u>, <u>reliable</u> and <u>possible</u> to set up and ready to be <u>further developed</u> if any official institution should ask for it

- WP5 Warning System:
 - How? => based on a generic concept:



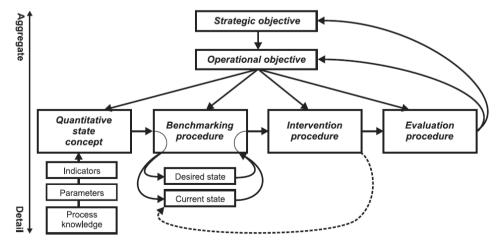


WP5 – Warning System:

WP5 – Warning System:

- WP5 Warning System:
 - Forecast module:
 - Translate metocean conditions to X-Beach input
 - Translate X-Beach output into physical parameters:
 - Overtopping discharge Q (I/m/s)
 - Run-up level
 - Dune feet position
 - Erosion volume
 - Dune volume above storm surge level
 - Others?
 - Physical parameters => input for the SIIs

- WP5 Warning System:
 - Visualisation module:
 - Web-based GIS maps:
 - Input:
 - Forecast of waves, tides + (currents)
 - For each SII:
 - Maps with colour bars/code



- WP5 Warning System:
 - Storm impact indicators:
 - are **NOT** physical parameters
 - to make the essential components of coastal decision making explicit

 q methodology aimed at structuring the end user-specialist interaction in application oriented knowledge development

settings act indicators

- WP5 Warning System:
 - Storm impact indicators for Mariakerke beach:

Strategic Objective	Operational Objective	QSC	Benchmarking Desired State	Benchmarking Current State	Intervention Procedure	Evaluation Procedure
Provide a sufficient wide beach to ensure recreational activities	Keep the beach wide enough by artificial nourishments during the low recreational season	Space time maps with the (horizontal) position of the high water line and the beach width	Dry beach width > x m	Model results for the position of the high water line (LW line is defined by its vertical level (0m TAW), dus niet relevant)	Based on the predicted dry beach width, prepare beach nourishment campaigns	After storms check wether the predicted decrease in dry beach width was accurate & the evaluation of the strategic objective may result in change of the beach nourishment program
Guarantee a sufficient safe beach to ensure recreational activities	Keep the beach free from scarps and erosion cliffs (wet (=intertidal) and dry beach)	Space time maps with the indication of scarps and erosion cliffs	height of erosion cliffs < x m	Model results for the position, amount and magnitude of erosion cliffs and beach scarps	Based on the predicted beach profile, prepare intervention	Check predicted beach status with status after major storms
Guarantee an efficient as well ass effective respons to threaths for infrastructures on the beach	Organise evacuation or protection of material and infrastructure under threat	Space time maps with the indication of the run-up level and beach erosion	Run-up level < x m & beach erosion front more than x m away from inrastructure	Online predictions of run-up level and beach erosion front	Based on predicted level organise evacuation of infrastructure on the beach or plan protective actions	Infrastructure is safe when situated above a certain run-up level, evacuate when higher run-up levels are expected.
Guarantee sustainable safety of (inhabited) property	Keep the overtopping discharge (over the dyke) sufficiently low	Along dike vs. time prediction of the overtopping discharge Q	Safety is guaranteed as long as the overtopping discharge Q < x I/m/s	Online prediction of the overtopping discharge as function of time	Start evacuation of buildings if the predicted overtopping discharges are too high	Inhabitants are safe below the critical overtopping discharge, and evacuated when higher overtopping discharges are expected.

- WP5 Warning System:
 - Oportunities to improve model train:
 - More detailed forecast of wave and tide
 - Wave: periods and direction
 - Tide: tidal curve
 - Hourly values?
 - Measured data available to verify model capabilities
 - 2D based XBeach
 - Forecast of November 2007?

- Overview of MICORE project:
 - Main goals
 - WP1 Historical Storms
 - WP2 Data standards
 - WP3 Site monitoring
 - WP4 Models and impacts
 - WP5 Warning System
 - WP6 Dissemination

- WP6 Dissemination:
 - Elements:
 - Project web-site: <u>www.micore.eu</u>
 - Training sessions for scientists: OpenEarth & XBeach
 - Training sessions for end-users: to be scheduled
 - SII reporting
 - Journal Special Issues:
 - Geomorphology =>storm thresholds = under review
 - Natural Hazards => global warming = in compilation
 - Final project meeting = workshop => May 2010

