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ABSTRACT: 
This work presents results from the use of Artificial Neural Networks (ANN) to improve wave models 
hindcasting capacity off the South coast of Portugal. Comparison of the original model results with field 
measurements showed significant non linear deviations. To compensate for such deviations, a three-layer 
Multilayer Perceptron (MLP – a type of an ANN) was trained, using the Levenberg-Marquardt method, to 
improve the fit between the hindcast (generated by WW3) and Faro buoy data in an effort to reconstruct missing 
data from the wave buoy time series. The results obtained so far are very positive; with the training with annual 
datasets showing better results than the training with the entire dataset, while both improved significantly the 
fitting of the raw model results. Further improvements are expected by trying different ANN types, by searching 
for optimised ANN input-output structure, and by performing sub-set selection on the data sets. 
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1. INTRODUCTION 
In-situ deployed instruments, such as buoys, are 
invaluable sources for continuous long-term 
oceanographic data acquisition, which is 
fundamental for a variety of research and operational 
applications. Given the rough and unfavourable 
conditions in the ocean, data gaps are a common 
consequence of instrument loss, malfunctioning, or 
delayed maintenance and data collection, being a 
major problem for data analysis. As an example 
Figure 1 characterize the data gaps (more than 3h 
without data) present on a wave time series obtained 
from the Faro Directional Wave Buoy (Portuguese 
Hydrographical Institute - IH), between 2000 and 
2006.  
 

Figure 1. Number and length of gaps present in a 
wave time series obtained from Faro Wave buoy 

(IH). 
 

Periods without data can last from three hours to 
several days or weeks and simple interpolation 
methods are usually not an acceptable approach. 
One solution for these cases is to fill the gaps with 
results obtained by a wave generation model, e.g. 

WAVEWATCH III™ (Tolman, 2009). However 
wave models are highly-dependent on the quality 
and resolution of the wind forcing (Cavaleri and 
Bertotti, 2006; Ponde de Léon and Guedes Soares, 
2008) and model results often show significant 
deviations from the real data at sheltered locations 
where local winds play an important role on the 
wave climate (Figure 2). 
 

 
Figure 2. Linear correlation between Hs Faro buoy 

and WW3, for the year 2004. 
 
One way to solve this non linear problem is through 
the use of artificial neural networks (ANN), since 
these are a modelling tool that can be used to model 
complex relationships between inputs and outputs.  
There are already in the bibliography some examples 
of the applications of ANN's in ocean engineering 
like to reconstruct wave time series using 
information from neighbourhoods buoys (Deo and 
Kumar, 2000; Puca et al., 2001; Londhe and 
Panchang, 2007;Medina and Serrano-Hidalgo, 2004) 
or for wave forecasting (Tsai et all., 2002; 
Makarynskyy , 2004; Makarynskyy et al., 2005;) 
using historical data from buoy for training. 
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The aim of this work is to train a three-layer  
Multilayer Perceptron (MLP – type of an ANN) to 
improve the fit between the hindcast (generated by 
WW3) and Faro buoy data in order to reconstruct 
missing data from the wave buoy time series. 
 
2. METHODS 
 
2.1 ANN Description 
A neuron is defined as an information-processing 
unit that is fundamental to the operation of a neural 
network. Figure 3 shows a simple one-neuron model 
to illustrate the neural networks structure. 
 

 
Figure 3. Model of a typical neuron. 

 
The neuron includes a set of synapses or connecting 
links, each link connecting the respective input to the 
summation block. Associated with each synapse, 
there is a strength or weight, which multiplies the 
associated input signal. The input signals are 
integrated in the neuron. Usually an adder is 
employed for computing a weighted summation of 
the input signals. The resulting sum is adjusted by a 
bias to become the net input of the activation 
function, which limits the output of a neuron to 
some finite value (Bose and Liang, 1996). The 
mathematical expression for a neuron (j) can be 
written as: 
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Where netj is the input of the neuron j, xi the ith 
input of the neuron, wji the weight for the input i and 
neuron j, θj the bias, φ the activation function, and yi 
the output of the neuron j.The activation function is 
used to transform the activation level of a unit 
(neuron) into an output signal. The ANN process 
consists of two stages: learning and recalling. In the 
learning stage, the algorithm continuously adjusts 
the weights of the neurons. Once proper weights are 
found, they are fixed in the recalling stage that the 
model can be further tested with other samples.  
Training can be considered as a general function 
optimization problem, with the adjustable 
parameters being the weights and the biases of the 
network, and one of the most accepted methods to 
solve this problem is the Levenberg-Marquardt. A 

review on the Levenberg-Marquardt method can be 
found in Suratgar et al. (2005). The general scope of 
the learning optimization is to reduce the error 
between the desired output (target) and the actual 
output. The error E, is defined as the sum-squared 
differences between the values of the outputs of the 
network and the desired target values: 
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Where dj and yj are the desired and actual output 
values of the output neuron j. 
 
2.2 Multilayer Perceptron 
One of the most common methods used in ANN is 
the Multilayer Perceptron (MLP). With MLP is 
possible to have more than one layer of neurons 
inside the network, known as hidden layers, which 
can improve the network computation (Figure 4). 
With this network structure the outputs of each 
neuron represent the inputs of the next above 
neuron.  

 
Figure 4. Model of a Multilayer Perceptron with 1 

hidden layer. 
 
2.3 Wave data acquisition 
The significant wave height (Hs) from two distinct 
sources was considered for the present analysis: (i) 
wave measurements obtained from a directional 
wave buoy (Figure 5) operated by the Portuguese 
Hydrographical Institute and located off Sta. Maria 
Cape (Faro) -  the data set extends from 2000 to 
2006, presents gaps (Figure 1) and a frequency 
acquisition of 3 hours; (ii) continuous modeled wave 
data at the nearest location to the wave buoy (Figure 
5) with a time-step of 3 hours;.these outputs are 
derived from a one-way nesting application of the 
WaveWatch III (WW3) regional model described in 
Dodet et al. (2010). 
 

 
Figure 5. Location of the wave data sources. 
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2.4 Network inputs and targets 
For this work only the parameter Hs was tested as 
target. Nevertheless, the same structure of 
implementation can be applied for other wave 
variables (e.g. wave period and direction). Two 
types of tests were preformed for the present work:  
1) using the entire dataset (covering the whole 6 year 
span) testing two different topologies (test 1 and 2); 
2) training each year of data separately, testing in all 
the cases the same topology (test 3, 4, 5, 6, 7, 8, 9); 
The architecture of each test is present in Table I. 
For each network 70% of the data was used for 
training and 30% for validation. 
 

Table I. ANN architectures for each test. 
Test Topology 

(input-hidden-output) 
Record 
number 

year 

1 [9 30 1] 
2 [9 50 1] 18382 2000-

2006 
3 2521 2000 
4 2786 2001 
5 2833 2002 
6 2817 2003 
7 2283 2004 
8 2771 2005 
9 

[9 30 1] 

2371 2006 
 
Each of the tests presented was implemented using 
the same input structure: 
 
[Hs(t-2Δt)  T(t-2Δt) Dir(t-2Δt)  Hs(t-Δt)  T(t-Δt) 
Dir(t-Δt)  Hs(t)  T(t)  Dir(t)] 
 
Where Hs is the significant wave height, T the wave 
period, Dir is the wave direction, t is the time instant 
with Δt = 3 hours. For the targets the structure 
present in every simulation was [Hs(t)]. 
 
3. RESULTS 
The performance of the training tests was evaluated 
by comparing the coefficient of determination (r2) 
and the root mean squared error (RMSE) between 
the target (IH) and the output data (trained WW3) 
against the r2 and RMSE between the same target 
(IH) and the non trained WW3 data (Figure 6). 
 

Figure 6. Performance of the training tests and non 
trained WW3 data against the IH buoy data.  

 

Comparisons show that modelled data trained with 
ANN’s has improved significantly the correlation 
between the wave buoy and WW3 data (presenting 

 using annual data 
stead of the complete series (tests 3 to 9) further 
proved the fitting (Figure 7). 

 
 

r2 always above 0.8) and reduced the RMSE (with 
values always bellow 0.25 m).  
The implementation of ANN’s
in
im

Figure 7. Example of the results obtained for test 4. 

ess and further improvements are 
xpected to find the best architecture of ANN and 
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4. FINAL CONSIDERATIONS 
The present contribution presents promising 
preliminary results from the use of ANN’s to 
improve wave hindcast model results. Comparisons 
between non-trained and trained outputs show a 
significant improve on data quality when compared 
with buoy observations. The training with annual 
datasets show better results than the training with the 
entire dataset, while both improved significantly the 
fitting of the raw model results. The work is 
currently on progr
e
dataset structure.  
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